Abstract

Solvothermal synthetic routes can provide energy-savvy platforms to fabricate battery anode materials involving relatively milder annealing steps vis-à-vis the conventional solid-state synthesis. These energy efficient routes in turn restrict aggressive grain growth to form nanoscale particles favouring efficient Li+ diffusion. Here, we report an economic solution combustion synthesis of SrLi2Ti6O14 anode involving nitrate-urea complexation with a short annealing duration of only 2 h (900 °C). Rietveld refinement confirms the phase purity of target product assuming an orthorhombic framework (Cmca symmetry). It delivers reversible capacity of ∼125 mAh.g−1 at a rate of C/20 involving a 1.38 V Ti4+/Ti3+ redox activity with excellent rate kinetics and cycling stability. Bond valence site energy (BVSE) calculations gauge SrLi2Ti6O14 to be an anisotropic 3D Li+ ion conductor with the highest ionic conductivity along the c direction. The electrochemical and diffusional pathways have been elucidated for combustion prepared SrLi2Ti6O14 as an efficient and safe negative electrode candidate for Li-ion batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call