Abstract

Investigating green and effective means for ammonia synthesis is an important but challenging task. Electrochemical ammonia synthesis (EAS) from an indirect route (N2 → NOx → NH3) provides a feasible alternative strategy. The key step in this route is the reduction of NOx to NH3 instead of N2, which requires the investigation of efficient catalysts with high selectivity of NH3. Herein, we initially demonstrate a highly efficient electrochemical reduction of NO2- to NH3 with nickel phosphide (Ni2P) as the catalyst. The system exhibits low onset potential (0.2 V vs. RHE) and high faradaic efficiency (>90%) for EAS. Experimental results and theoretical calculations reveal that the in situ generated hydrogen atoms on the surface of Ni2P greatly promote the reduction of NO2- to NH3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.