Abstract

The electrochemical utilization of various submicron amorphous manganese dioxide spheres (SMnO2) with highly controlled shape and size was investigated by cyclic voltammetry and electrochemical impedance spectroscopy. MnO2 spheres were synthesized by reaction between KMnO4 and 1–butanol in aqueous butyric acid solution at room temperature. Particle size was tuned by adjusting the concentration of KMnO4. The materials were characterized by X-ray diffraction, scanning electron microscopy, dynamic light scattering and nitrogen gas adsorption measurements. SEM results reveal that spheres with average diameter of 451±9, 218±12 and 195±85nm were produced by using a 20, 8 and 2mM of KMnO4 solution, respectively. DLS measurements showed similar mean particle diameter with a relatively high polydispersity-index that indicates the presence of larger agglomerated particles. The BET surface area of the three SMnO2 is ranging between 216 and 259m2g−1. Since very similar specific capacitance values of about 200Fg−1 (per active material mass) at 2mVs−1 were found for all three samples, MnO2 electrochemical utilization is more related to the pore size distribution rather than the particle size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.