Abstract

Decarbonizing N2 conversion is particularly challenging, but essential for sustainable development of industry and agriculture. Herein, we achieve electrocatalytic activation/reduction of N2 on X/Fe-N-C (X=Pd, Ir and Pt) dual-atom catalysts under ambient condition. We provide solid experimental evidence that local hydrogen radical (H*) generated on the X site of the X/Fe-N-C catalysts can participate in the activation/reduction of N2 adsorbed on the Fe site. More importantly, we reveal that the reactivity of X/Fe-N-C catalysts for N2 activation/reduction can be well adjusted by the activity of H* generated on the X site, i.e., the interaction between the X-H bond. Specifically, X/Fe-N-C catalyst with the weakest X-H bonding exhibits the highest H* activity, which is beneficial to the subsequent cleavage of X-H bond for N2 hydrogenation. With the most active H*, the Pd/Fe dual-atom site promotes the turnover frequency of N2 reduction by up to 10 times compared with the pristine Fe site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.