Abstract

The cobalt complex, [Co(CR)Br2]+, where CR is the redox-active macrocycle 2,12-dimethyl-3,7,11,17-tetraazabicyclo-[11.3.1]-heptadeca-1(17),2,11,13,15-pentaene, has been investigated for the electrocatalytic reduction of aqueous NO2- and NO3-. At neutral pH, the bromide ligands are hydrolyzed, providing [Co(CR)(OH2)(OH)]2+ as the major species in aqueous solution. In the presence of nitrite, [Co(CR)(NO2)2]+ is formed as the major species in solution and is a precursor to the electrocatalytic reduction of NO2-, which is selectively converted to ammonium with high Faradaic efficiency. There is evidence for both homogeneous and heterogeneous electrocatalysis. Although similar NO3- binding is not observed, electrocatalytic reduction to ammonium also occurs, albeit with a lower Faradaic efficiency. In this case, NO2- is generated as an intermediate product of NO3- reduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call