Abstract

Electrocatalytic reduction of CO2 into multicarbon (C2+) products is a highly attractive route for CO2 utilization; however, the yield of C2+ products remains low because of the limited C2+ selectivity at high CO2 conversion rates. Here we report a fluorine-modified copper catalyst that exhibits an ultrahigh current density of 1.6 A cm−2 with a C2+ (mainly ethylene and ethanol) Faradaic efficiency of 80% for electrocatalytic CO2 reduction in a flow cell. The C2–4 selectivity reaches 85.8% at a single-pass yield of 16.5%. We show a hydrogen-assisted C–C coupling mechanism between adsorbed CHO intermediates for C2+ formation. Fluorine enhances water activation, CO adsorption and hydrogenation of adsorbed CO to CHO intermediate that can readily undergo coupling. Our findings offer an opportunity to design highly active and selective CO2 electroreduction catalysts with potential for practical application. Electrocatalytic reduction of CO2 into multicarbon (C2+) products is a highly attractive route for CO2 utilization. Now, a fluorine-modified copper catalyst is shown to achieve current densities of 1.6 A cm−2 with a C2+ Faradaic efficiency of 80% for electrocatalytic CO2 reduction in a flow cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.