Abstract
Increasing world energy demands and crises led to alternative energy production methods, such as fuel cells using hydrogen gas which is the half electrochemical reaction of water splitting process. Herein, we synthesize polyvinylpyrrolidone coated Pd, Co and PdxCo1-x (x: 0.5, 0.12, 0.23, 0.49, 0.55, 0.62) metallic and bimetallic nanoparticles (NPs) via polyol process alternative to Pt-based catalysts for hydrogen evolution reaction (HER). Detailed structural analyses of Pd, Co and PdxCo1-x NPs revealed that fcc-Pd, fcc/hcp-Co and fcc-PdCo NPs crystal structures, and the lattice parameters were calculated as 3.5358 Å for Co NPs and 3.9777 Å for Pd NPs. The average size confirmed below 9 nm via TEM imaging and XPS data confirmed the formation of a bimetallic PdCo structure. Although Pd catalyst is mostly responsible for HER process, Pd62Co38 catalysts reduced the onset potential to about 197 mV and provided greater current density. Although Ea values were slightly higher against the Pt/C (20 wt %) benchmark which is reported as 16 kJ mol−1, PdCo NPs provided considerably reduced activation energy (Ea) values compared to Pd/C catalyst of 31 kJ mol−1. The best onset potential was recorded for Pd62Co38 catalysts for HER activity which is 16 mV higher compared to commercially available Pt/C catalyst.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have