Abstract
AbstractUnderstanding the regulatory mechanisms of neurotransmission is impossible without in vivo monitoring of neurotransmitters’ (NTs) transformation in the brain, and that can be performed by a variety of electrochemical methods. Close redox potentials of such NTs as catecholamines, however, impede their specific analysis in systems where they do co‐exist. Here, we studied the kinetics of dopamine and norepinephrine redox transformations on glassy carbon, micro‐structured spectroscopic graphite, and basal plane HOPG electrodes. We showed that in contrast to the “positive electrocatalysis” on porous microstructured graphite electrodes, “negative electrocatalysis” at the HOPG electrodes, displayed through slowing down of the reaction rate, allowed a ca. 0.1 V separation between dopamine and norepinephrine oxidations and individual detection of dopamine in the artificial cerebrospinal fluid. Dopamine could be detected within the 50 nM to 4 μM range with no interference from excesses of norepinephrine and ascorbic acid. The results suggest a new approach for design of the electrodes for specific analysis of dopamine in mixtures of structurally related NTs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have