Abstract

Resistance gene expression and microbial inhibition by halogenated antibiotics is a major environmental concern. Although electrocatalytic dehalogenation can detoxify halogenated antibiotics, the effect of dehalogenation treatment on resistance gene expression and microbial inhibition is poorly understood. Herein, a novel electrocatalyst of Fe-doped CoP nanotubes array on nickel foam (Fe-CoP NTs/NiF) is prepared through a simple ultrasonication of Fe-doped CoP nanowires hydrothermally grown on NiF. The transformation from nanowires to nanotubes improves the crystallinity of CoP and fully exposes active sites, producing energetic atomic hydrogen for dehalogenation. Fe-CoP NTs/NiF exhibits a superior dehalogenation performance towards refractory florfenicol (FLO), achieving 100% removal within 20 min (‒1.2 V vs Ag/AgCl, C0 = 20 mg L‒1). The dechlorination ratio reaches nearly 100%, and the defluorination ratio achieves 36.8% within 50 min, showing the best electrocatalytic dehalogenation performance reported so far. Microbial community and correlation analysis show that Proteobacteria is the main potential host of FLO resistance gene. Electrocatalytic reductive dehalogenation pretreatment of FLO can reduce microbial inhibition, maintaining microbial richness and diversity in the subsequent biochemical treatment unit. The electrocatalytic reductive dehalogenation treatment can significantly reduce the relative abundance of FLO resistance gene, showing a reliable process for safe treatment of halogenated antibiotic containing wastewater.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.