Abstract
Transition metal dichalcogenides (TMDs) exhibit promising catalytic properties for hydrogen generation, and several approaches including defect engineering have been shown to increase the active catalytic sites. Despite preliminary understandings in defect engineering, insights on the role of various types of defects in TMDs for hydrogen evolution catalysis are limited. Screw dislocation-driven (SDD) growth is a line defect and yields fascinating spiral and pyramidal morphologies for TMDs with a large number of edge sites, resulting in very interesting electronic and catalytic properties. The role of dislocation lines and edge sites of these spiral structures on their hydrogen evolution catalytic properties is unexplored. Here we show that the large number of active edge sites connected together by dislocation lines in the vertical direction for a spiral WS2 domain results in exceptional catalytic properties toward hydrogen evolution reaction. A micro-electrochemical cell fabricated by photo- and electron beam-lithography processes is used to study the electrocatalytic activity of a single spiral WS2 domain, controllably grown by chemical vapor deposition. Conductive atomic force microscopy studies show improved vertical conduction for the spiral domain, which is compared with monolayer and mechanically exfoliated thick WS2 flakes. The obtained results are interesting and shed light on the role of SDD line defects, which contribute to large number of edge sites without compromising the vertical electrical conduction, on the electrocatalytic properties of TMDs for hydrogen evolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.