Abstract

The presence of electric or microwave fields can modify the long-range forces between ultracold dipolar molecules in such a way as to engineer weakly bound states of molecule pairs. These so-called field-linked states [A. V. Avdeenkov and J. L. Bohn, Phys. Rev. Lett. 90, 043006 (2003).PRLTAO0031-900710.1103/PhysRevLett.90.043006; L. Lassablière and G. Quéméner, Phys. Rev. Lett. 121, 163402 (2018).PRLTAO0031-900710.1103/PhysRevLett.121.163402], in which the separation between the two bound molecules can be orders of magnitude larger than the molecules themselves, have been observed as resonances in scattering experiments [X.-Y. Chen et al., Nature (London) 614, 59 (2023).NATUAS0028-083610.1038/s41586-022-05651-8]. Here, we propose to use them as tools for the assembly of weakly bound tetramer molecules, by means of ramping an electric field, the electric-field analog of magnetoassociation in atoms. This ability would present new possibilities for constructing ultracold polyatomic molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call