Abstract

The instability of a thin sheet of dielectric liquid moving in the same direction as an air stream in the presence of a uniform horizontal electric field is studied theoretically. It is found that aerodynamic-enhanced instability occurs if the Weber number is much less than a critical value related to the ratio of the air and liquid stream velocities, the electric field, and the dielectric constant values. The electric field is found to have a stabilizing effect, and there exists a critical Weber number above which instability is suppressed by the surface tension effect. The condition for disintegrating the sheet is obtained in terms of the electric field values, and some limiting cases are recovered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.