Abstract

To overcome the fundamental limitations of conventional MOSFETs, tunnel field effect transistors (TFETs) with strained-SiGe channel (via heterogeneous integration) may be used and is demonstrated using TCAD simulations. We mainly focus on the design and implementation of silicon-germanium (SiGe)-based tunnel field effect transistor, aiming to reduce the device operation voltage down to below 0.5 V. Physics-based electro-thermal simulations are performed for evaluating the self-heating (temperature rise) in the devices. We present the results of the electro-thermal analysis supported by effective 2D and 3D device simulations. Performance improvement in drain current as high as 200% has been achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.