Abstract
We have characterized the conduction and blocking properties of two different chloride channels from brain mitochondrial inner membranes after incorporation into planar lipid bilayers. Our experiments revealed the existence of channels with a mean conductance of 158 ± 7 and 301 ± 8 pS in asymmetrical 200 mM cis/50 mM trans KCl solutions. We determined that the channels were ten times more permeable for Cl− than for K+, calculated from the reversal potential using the Goldman-Hodgkin-Katz equation. The channels were bell-shaped voltage dependent, with maximum open probability 0.9 at ± 20 mV. Two mitochondrial chloride channels were blocked after the addition of 10 µM DIDS. In addition, 158 pS chloride channel was blocked by 300 nM NPPB, acidic pH and 2.5 mM ATP, whereas the 301 pS chloride channel was blocked by 600 µM NPPB but not by acidic pH or ATP. Gating and conducting behaviors of these channels were unaffected by Ca2+. These results demonstrate that the 158 pS anion channel present in brain mitochondrial inner membrane, is probably identical to IMAC and 301 pS Cl channel displays different properties than those classically described for mitochondrial anion channels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.