Abstract

We report on electro-optical modulation with a sub-1-V sensitivity in a photonic crystal slab waveguide resonator which contains a nanostructured second-order nonlinear optical polymer. The electro-optical susceptibility in the core was induced by high electric-field poling. A square lattice of holes carrying a linear defect was transferred into the slab by electron-beam lithography and reactive ion etching, creating a photonic crystal slab-based resonator. Applying an external electric modulation voltage to electrodes leads to a linear electro-optical shift of the resonance spectrum and thus to a modulation of the transmission at a fixed wavelength based on the electronic displacement polarization in a noncentrosymmetric medium (Pockels effect). This effect is therefore inherently faster than other reported electro-optic modulation effects in nanophotonics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call