Abstract

Fatigue-induced damage is often progressive and gradual in nature. Fatigue is often deteriorated by corrosion in ageing structures, creating maintenance problems, and even causing catastrophic failure. This ushers the development of structural health monitoring (SHM) and nondestructive evaluation (NDE) systems. Recent advent of smart materials applicable in SHM alleviates the shortcomings of the conventional techniques. Autonomous, real-time, remote monitoring becomes possible with the use of smart piezoelectric transducers. For instance, the electro-mechanical impedance (EMI) technique, employing piezoelectric transducers as collocated actuators and sensors, is known for its ability in damage detection and characterization. This article presents a series of lab-scale experimental tests and analysis to investigate the feasibility of fatigue crack detection and characterization employing the EMI technique. This study extends the work by Lim and Soh [1] to incorporate the phases involving crack initiation and critical crack. It is suggested that the EMI technique is effective in characterizing fatigue induced cracking, even in its incipient stage. Micro-crack invisible to the naked eyes can be detected by the technique especially when employing the higher frequency range of 100–200 kHz. A quick and handy qualitative-based critical crack identification method is also suggested by visually inspecting the admittance frequency spectrum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.