Abstract
Similar to biological muscles, the actuator materials can function as artificial muscles by directly converting an external stimulus in the form of electrical or chemical energy into a mechanical response through the reversible changes in material dimensions. As a new type of high surface-area actuator materials, nanoporous metals represent a novel class of smart electrodes that undergo reversible dimensional changes when applying an electronic voltage on the surface. The dimensional changes in nanoporous metal/polymer composite still originate from the surface stress of nanoporous metal. Additionally, this surface stress can be modulated by the co-adsorbed sulfate counter-ions that are present in the doped polymer chains coating matrix upon the application of an external potential. Nanoporous metals fabricated by dealloying have received extensive attention in many areas, such as catalysis/electrocatalysis, energy conversion/storage, and sensing/biosensing. In this review, we focus on the recent developments of dealloyed nanoporous metals in the application of actuation. In particular, we summarize the experimental strategies in the studies and highlight the recent advances in the actuator materials. Finally, we conclude with outlook and perspectives with respect to future research on dealloyed nanoporous metals in applications of actuation in electrochemical or chemical environment.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have