Abstract
Reliable forecast of electricity demand is crucial to stability, supply, and management of electricity grids. Short-term hourly and sub-hourly demand forecasts are difficult due to the stochastic nature of electricity demand. To improve the electricity demand forecasts, artificial neural networks are combined with attention-based bi-directional neural network as well as Error Correction methods, and Bayesian hyperparameter optimizations. As part of the hybrid VMD-CABLSTM-ANN-EC model, the intrinsic mode functions, representing distinct predictive features, are separated from electricity demand data using variational mode decomposition algorithm. For predicting each intrinsic mode function and respective error time series, convolutional neural networks-bi-directional long short-term memory algorithms are applied. In a second stage, error time series are split, followed by a model to predict the error series’ intrinsic mode functions, and a final integration stage to predict the error. The results of the proposed VMD-CABLSTM-ANN-EC model are benchmarked against decomposition-based and standalone models at substations in Queensland, Australia. The proposed VMD-CABLSTM-ANN-EC model outperformed all benchmark models. By splitting the predictor and target variables, it will be shown that the variational model decomposition method improves error corrections by revealing key features of historical demand data. Using error correction method in short-term electricity demand modelling can provide greater confidence in the prediction of electricity demand. The models can be used by energy providers for market analysis and insight research, to manage power failure risk, and make financial decisions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.