Abstract

We investigated the performance of electric-field-induced second-harmonic generation (E-FISHG) by spectroscopic measurement using high-intensity femtosecond laser pulses. The second-harmonic intensity increased quadratically versus the applied electric field, as expected from the theory, up to 15 kV/cm with the laser energy up to 2.5 mJ, which is ∼5 times higher than the observable optical breakdown threshold. In addition, when the laser energy was 2.8 mJ, ∼80 times signal intensity at 0.23 mJ was obtained. These results suggest that the electric-field measurement by E-FISHG with high-intensity second harmonics is expected by using high-intensity laser pulses above the observable optical breakdown threshold. Spectroscopic measurement shows no E-FISHG of white light generated by self-phase modulation in laser-induced filament.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.