Abstract
We report tunable in-plane anisotropic magnetoresistance (AMR) in nanodevices based on topological insulator BiSbTeSe2 (BSTS) nanoflakes by electric gating. The AMR can be changed continuously from negative to positive when the Fermi level is manipulated to cross the Dirac point by an applied gate electric field. We also discuss effects of the gate electric field, current density, and magnetic field on the in-plane AMR with a simple physical model, which is based on the in-plane magnetic field induced shift of the spin-momentum locked topological two surface states that are coupled through side surfaces and bulk weak antilocalization (WAL). The large, tunable and bipolar in-plane AMR in BSTS devices provides the possibility of fabricating more sensitive logic and magnetic random access memory AMR devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.