Abstract
We report the observation of in-plane anisotropic magnetoresistance and planar Hall effect in non-magnetic HfTe5 thin layers. The observed anisotropic magnetoresistance as well as its sign is strongly dependent on the critical resistivity anomaly temperature T p. Below T p, the anisotropic magnetoresistance is negative with large negative magnetoresistance. When the in-plane magnetic field is perpendicular to the current, the negative longitudinal magnetoresistance reaches its maximum. The negative longitudinal magnetoresistance effect in HfTe5 thin layers is dramatically different from that induced by the chiral anomaly as observed in Weyl and Dirac semimetals. One potential underlying origin may be attributed to the reduced spin scattering, which arises from the in-plane magnetic field driven coupling between the top and bottom surface states. Our findings provide valuable insights for the anisotropic magnetoresistance effect in topological electronic systems and the device potential of HfTe5 in spintronics and quantum sensing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.