Abstract

A high-pressure-synthesized double perovskite Sr2YOsO6 was investigated by synchrotron X-ray diffraction and measurements of its magnetic susceptibility, specific heat capacity, complex impedance, and complex dielectric constant. It crystallized into a monoclinic double perovskite structure (P21/n) with complete ordering of the Y and Os atoms. Its magnetic behaviors, including the antiferromagnetic transition temperature (∼52 K), Curie-Weiss effective moment [3.48(5) μB/Os], and Weiss temperature [−350.1(7) K], were close to the respective values of Sr2YOsO6 previously synthesized without an applied pressure of 6 GPa. Transport property measurements revealed that the lower limit of the activation energy was 192(1) meV and the charge gap remained open regardless of the presence of magnetic order, conflicting with the electron delocalization predicted by theoretical calculations. Further consideration, including theoretical and experimental investigations of the roles of spin–orbit coupling and U of the 5d electrons of Os 5d-t2g3, may assist in understanding the general magnetic and insulating behaviors of quasi-half-filled 5d-t2g3oxides in the perovskite category toward the use of 5d double perovskite for magnetic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.