Abstract

Iridium-based double perovskite (DP) Sr2CrIrO6 is expected to have the highest Curie temperatures (Tc) among all DPs and a high spin-polarization at room temperature, thanks to the more extended 5d orbitals of Ir, which makes it potential candidate in spintronic applications. Several publications have appeared in recent years documenting Ir-based double perovskites, but very few have explored the promising compound Sr2CrIrO6. In this paper, a Monte Carlo simulation has been carried out in the framework of Ising model to make an exploratory study of Sr2CrIrO6. Thermal magnetization, magnetic susceptibility, internal energy and specific heat have been studied. Effect of crystal field of Ir on the magnetic properties has been explored. Magnetic hysteresis cycle has been studied in relation to the exchange coupling values. Effects of Ir-substitution doping by Os “Sr2CrIrxOs1−xO6” and by Re “Sr2CrIrxRe1−xO6” (0.1≤x≤0.5) on the magnetic behavior have been investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.