Abstract

We achieve the continuous-wave (CW) lasing of electrically-injected, first-of-their-kind vertical-cavity surface-emitting lasers (VCSELs) that use a subwavelength monolithic high-refractive-index-contrast grating (MHCG) mirror. The MHCG, unlike the well-known high-refractive-index-contrast grating (HCG) is neither a membrane suspended in the air nor a structure that requires a cladding layer. The MHCG is patterned in a semiconductor material atop the VCSEL cavity creating an all-semiconductor laser. Static measurements show CW operation of the VCSELs from room temperature up to 75 °C. The VCSEL with a 13.5 μm current oxide aperture diameter operates with quasi-single mode emission from threshold to rollover. Our results open a way to produce all-semiconductor surface emitting lasers emitting at wavelengths from the ultraviolet and the visible (GaN-based) to the infrared (InP- and GaSb-based) with a reduced vertical thickness and thus we believe the manufacturing costs potentially will be reduced by approximately up to about 90% in comparison to the typical DBR VCSELs. Our VCSELs have immediate and emerging applications in optical communication, illumination, sensing, and as light sources in photonic integrated circuits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call