Abstract
Current steering is a neural stimulation strategy that uses simultaneous stimulation of adjacent electrodes to produce additional intermediate stimulation sites and thus improves spatial resolution. We investigated the feasibility of current steering using electrophysiological and computational methods after implanting paired penetrating electrodes into the rabbit's optic nerve (ON). Penetrating electrodes at different interelectrode distances were implanted into the ON and electrically evoked cortical potentials (EEPs) in V1 recorded with a 6 × 8 array. The current thresholds, EEP amplitudes, and spatial distributions were analyzed during current steering. Computational simulation studies were performed based on finite element models to calculate the area and spatial distribution of recruited ON fibers using a current steering stimulation strategy. Threshold reduction and EEP amplitude enhancement were found with simultaneous stimulation of closely spaced electrode pairs. Spatially shifted cortical responses were achieved using current steering, whereas the amplitudes and spatial spreads of the responses were similar to that elicited by a single electrode. Computational simulations suggested that the centroid of the ON recruitment area could be modulated by current steering while the total recruitment area did not show any appreciable variability at a fixed current intensity. Current steering is a useful strategy to enhance the spatial resolution of an ON prosthesis without increasing the number of physical electrodes. This study provides useful information for optimizing the design of stimulation strategies with a penetrating ON prosthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.