Abstract

ObjectivesThe study aimed to assess the feasibility of recording electrically evoked compound action potentials (ECAPs) from the rat spinal cord. To achieve this, we characterized electrophysiological responses of dorsal column (DC) axons from electrical stimulation and quantified the relationship between ECAP and motor thresholds (ECAPTs and MTs). Material and MethodsNaïve, anesthetized, and freely behaving rats were implanted with a custom-made epidural spinal cord stimulation (SCS) lead. Epidural stimulation and recordings were performed on the same lead using specifically designed equipment. ResultsThe ECAPs recorded from the rat spinal cord demonstrated the expected triphasic morphology. Using 20 μsec pulse duration and 2 Hz frequency rate, the current required in anesthetized rats to generate ECAPs was 0.13 ± 0.02 mA, while the average current required to observe MT was 1.49 ± 0.14 mA. In unanesthetized rats, the average current required to generate ECAPs was 0.09 ± 0.02 mA, while the average current required to observe MT was 0.27 ± 0.04 mA. Thus, there was a significant difference between the ECAPT and MT in both anesthetized and unanesthetized rats (MT was 13.39 ± 2.40 and 2.84 ± 0.33 times higher than ECAPT, respectively). Signal analysis revealed average conduction velocities (CVs) suggesting that predominantly large, myelinated fibers were activated. In addition, a morphometric evaluation of spinal cord slices indicated that the custom-made lead may preferentially activate DC axons. ConclusionsThis is the first evidence demonstrating the feasibility of recording ECAPs from the rat spinal cord, which may be more useful in determining parameters of SCS in preclinical SCS models than MTs. Thus, this approach may allow for the development of a novel model of SCS in rats with chronic pain that will translate better between animals and humans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.