Abstract

The first electrically driven random laser diode with nonvolatile resistive random access memory functionality is designed and demonstrated. To illustrate the working principle, a metal–insulator–semiconductor structure based on Pt/MgO/ZnO thin‐film layers is fabricated on indium tin oxide glass. The current–voltage curve of the dual‐function random laser memory (RLM) device exhibits an excellent electrical bistability with a high ON/OFF current ratio (≈107). The random lasing behavior is simultaneously demonstrated by using electrical pumping with the appearance of sharp‐peak emissions and a drastic enhancement of peak intensity. A wide angle‐dependent electroluminescence not only reveals its emitting advantage but also further supports the origin of random lasers. The first proof‐of‐concept presentation of RLM possesses several advantages of dual memory and lasing functions, which enables to open up new avenues to practical applications, such as light emitting memories for electrical and optical communication. This new horizon for the realization of all optical memories should therefore be able to attract academic as well as industrial interests. It is stressed here that the electrical reading of conventional memory array is usually in serial sequence, which limits the maximum data throughput. This hurdle can be overcome by optically readable memory devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call