Abstract

Robust, nanoscale light-emitting devices are attractive for emerging photonic and quantum engineering applications. However, conventional approaches suffer from fabrication challenges or lack the potential to address individual nanostructures, such as quantum dots. In this paper, we present a device that can produce electrically driven light emission from a single quantum dot using a single carbon nanotube as the charge injection contact. The device has a metal-oxide-semiconductor capacitor structure and operates based on an unconventional mechanism of electroluminescence, which relies on the use of bipolar voltage pulses. The proposed device can be fabricated in a simple manner using conventional lithographic processes, offering a scalable approach toward the development of optoelectronic devices at the single dot level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.