Abstract

Chiral phonons have attracted increasing attention, as they play important roles in many different systems and processes. However, a method to control phonon chirality by external fields is still lacking. Here, we propose that in displacement-type ferroelectric materials, an external electric field can reverse the chirality of chiral phonons via ferroelectric switching. Using first-principles calculations, we demonstrate this point in the well-known two-dimensional ferroelectric In2Se3. This reversal may lead to a number of electrically switchable phenomena, such as chiral phonon induced magnetization, the phonon Hall effect, and possible topological interface chiral phonon modes at ferroelectric domain boundaries. Our work offers a way to control chiral phonons, which could be useful for the design and application of thermal or information devices based on them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.