Abstract

Chiral phonons have attracted increasing attention, as they play important roles in many different systems and processes. However, a method to control phonon chirality by external fields is still lacking. Here, we propose that in displacement-type ferroelectric materials, an external electric field can reverse the chirality of chiral phonons via ferroelectric switching. Using first-principles calculations, we demonstrate this point in the well-known two-dimensional ferroelectric In2Se3. This reversal may lead to a number of electrically switchable phenomena, such as chiral phonon induced magnetization, the phonon Hall effect, and possible topological interface chiral phonon modes at ferroelectric domain boundaries. Our work offers a way to control chiral phonons, which could be useful for the design and application of thermal or information devices based on them.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call