Abstract
In this study, electrically conductive, borate-based, porous 13-93B3 bioactive glass composite scaffolds were prepared using a polymer foam replication technique. For this purpose, a slurry containing 40 vol% glass particles and 0-10 wt% graphene nanoplatelets was prepared by dispersing the particles in ethanol in the presence of ethyl cellulose. Composite scaffolds were subjected to a controlled heat treatment, in air atmosphere, to decompose the foam and sinter the glass particles into a dense network. It was found that the applied heat treatment did not influence the structure of graphene in the glass network. Graphene additions did not negatively affect the mechanical properties and enhanced the electrical conductivity of the glass scaffolds. In X-ray diffraction analysis, the crystalline peak corresponding to hydroxyapatite was observed in all the samples suggesting that all of the samples were bioactive after 30 days of immersion in simulated body fluid. However, Fourier transform infrared spectroscopy analysis and scanning electron microscope observations revealed that hydroxyapatite formation rate decreased with increasing graphene concentration especially for samples treated in simulated body fluid for shorter times. Based on the cytotoxicity assay findings, the MC3T3-E1 cell growth was significantly inhibited by the scaffolds containing higher amount of graphene compared to bare glass scaffolds. Best performance was obtained for 5 wt% graphene which yielded an enhancement of electrical conductivity with moderate cellular response and invitro hydroxyapatite forming ability. The study revealed that the electrically conductive 13-93B3 graphene scaffolds are promising candidates for bone tissue engineering applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.