Abstract

Bioactive glass (BG) based scaffolds (45S5 BG composition) were developed by the replica technique using natural marine sponges as sacrificial templates. The resulting scaffolds were characterized by superior mechanical properties (compression strength up to 4MPa) compared to conventional BG scaffolds prepared using polyurethane (PU) packaging foam as a template. This result was ascribed to a reduction of the total scaffold porosity without affecting the pore interconnectivity (>99%). It was demonstrated that the reduction of total porosity did not affect the bioactivity of the BG-based scaffolds, tested by immersion of scaffolds in simulated body fluid (SBF). After 1day of immersion in SBF, a homogeneous CaP deposit on the surface of the scaffolds was formed, which evolved over time into carbonate hydroxyapatite(HCA). Moreover, the enhanced mechanical properties of these scaffolds were constant over time in SBF; after an initial reduction of the maximum compressive strength upon 7days of immersion in SBF (to 1.2±0.2MPa), the strength values remained almost constant and higher than those of BG-based scaffolds prepared using PU foam (<0.05MPa). Preliminary cell culture tests with Saos-2 osteoblast cell line, namely direct and indirect tests, demonstrated that no toxic residues remained from the natural marine sponge templates and that cells were able to proliferate on the scaffold surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call