Abstract
AbstractTwo‐dimensional graphitic metal–organic frameworks (GMOF) often display impressive electrical conductivity chiefly due to efficient through‐bond in‐plane charge transport, however, less efficient out‐of‐plane conduction across the stacked layers creates large disparity between two orthogonal conduction pathways and dampens their bulk conductivity. To address this issue and engineer higher bulk conductivity in 2D GMOFs, we have constructed via an elegant bottom‐up method the first π‐intercalated GMOF (iGMOF1) featuring built‐in alternate π‐donor/acceptor (π‐D/A) stacks of CuII‐coordinated electron‐rich hexaaminotriphenylene (HATP) ligands and non‐coordinatively intercalated π‐acidic hexacyano‐triphenylene (HCTP) molecules, which facilitated out‐of‐plane charge transport while the hexagonal Cu3(HATP)2 scaffold maintained in‐plane conduction. As a result, iGMOF1 attained an order of magnitude higher bulk electrical conductivity and much smaller activation energy than Cu3(HATP)2 (σ=25 vs. 2 S m−1, Ea=36 vs. 65 meV), demostrating that simultaneous in‐plane (through‐bond) and out‐of‐plane (through πD/A stacks) charge transport can generate higher electrical conductivity in novel iGMOFs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.