Abstract
We derive the exact solutions for electrically charged black holes both in the absence and presence of a cosmological constant in the gravitational theory with Lorentz violation induced by a background Kalb–Ramond (KR) field. The corresponding thermodynamic properties are investigated. It is found that the standard first law of thermodynamics and the Smarr formula remain valid for the charged KR black holes. Nevertheless, the Lorentz-violating effect influences their ranges of local thermodynamic stability and the first- and second-order phase transition points. Furthermore, to examine the impact of Lorentz violation on the motion of test particles in the spacetime, we analyze the shadow and the innermost stable circular orbit (ISCO) of these black holes. Our results reveal that both the shadow and ISCO radii exhibit a high sensitivity to the Lorentz-violating parameter ℓ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\ell $$\\end{document}, with a decrease observed as ℓ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\ell $$\\end{document} increases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.