Abstract

We report low-temperature magnetoresistance (MR) measurements on rings of single-wall carbon nanotubes. Negative MR characteristic of weak one-dimensional localization is clearly observed from 3.0 to 60 K, and the coherence length L(varphi) is obtained as a function of temperature. The dominant dephasing mechanism is identified as electron-electron scattering. Below 1 K, we observe a transition from weak to strong localization, and below 0.7 K a weak antilocalization is induced by spin-orbit scattering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.