Abstract
We investigated the nature of the mechanical and the electrical tip-sample contact in scanning conductive torsion mode microscopy (SCTMM). Experiments on the soft conducting polymer blend of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) demonstrated that the tip-sample force and thus the danger of tip-induced sample damage can be minimized. Using current-voltage spectroscopy, we found a space-charge limited conduction behavior with no indication of a tunneling barrier. Spectroscopy and imaging experiments showed that SCTMM allows for a gentler tip-sample contact compared to conventional conductive scanning force microscopy. A gentle and well-defined contact is a prerequisite for reproducible scanning probe based conductivity measurements, in particular on soft organic materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.