Abstract
Ventral roots of the newborn rat spinal cord were stimulated while recording intracellularly from motoneurons. In many cells, stimulation subthreshold for an antidromic action potential in the impaled cell produced a small, short-latency depolarization, which was unaffected by membrane polarization. This response (antidromic synaptic potential, a.s.p.) was also seen, in some cells, on stimulating the ventral root of an adjacent segment. Replacement of Ca2+ (2 mM) with Mn2+ (3 mM) or Mg2+ (10 mM) completely abolished orthodromic synaptic potentials, but the a.s.p. persisted. These results strongly suggest that the a.s.p. is produced by an electrical interaction between motoneurons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of London. Series B, Biological sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.