Abstract

In this study the geodynamical scenario along with concepts of mantle plume and mobile belts is utilized to show that most of the existing and potential high thermal regions fall along the (mobile arms affected by the outburst and) traces of mantle plumes. Effects of channeling and partitioning of thermomagmatic flux (TMF) due to these mantle plumes along the mobile belts, particularly near the triple junctions, can be seen in the form of high heat flow and presence of hot springs. Triple junctions manifest over the Indian lithosphere are: Kutch-Cambay, Narmada Son-Godavari, Tapi-Mahanadi, Tapi-Damodar, Pondicherry region, Gulf of Mannar and SW corner of the subcontinent (off-shore), etc. Apart from mobile belts, the deltaic regions of Krishna, Godavari, Ganga, Cauvery, Narmada-Tapi and Indus, etc., are also posses higher level of thermal anomalies as these regions seem to have been substantially influenced by outbursts and traces of Reunion, Kerguelen, Marion and Crozet hotspots. This is reflected from the correlation between plume affected mobile belts and high heat flow regions, large number of hot springs, anomalous electrical conductivity and also deformation or seismicity. Such correlation can be seen along Cambay, west coast trend, Narmada-Son lineament zone, Godavari-Damodar grabens and Bengal basin. Himalayan belt being ongoing collision zone, thermal anomalies are identified in the form of hot springs along the Himalayan arc. At some locations, which might be junction of tectonic trends, there exist significantly large thermal outputs. Puga in Himalayan region is one such example, as seen from high heat flow (max. 468 mW m − 2 ) and geothermal gradient (234 °C/km max.). Similarly, Tatapani in Narmada Son Lineament (NSL) region is another such example. The present study discusses the correlation between thermal reservoirs identified by magnetotelluric (MT) study results and plume activity and suggests the need for systematic and detailed MT investigations along plume activated mobile strips in other regions to search for geodynamical history and geothermal resources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.