Abstract
Crustal silicate rocks at sub-solidus temperatures normally have high electrical resistivities. However, although upper crust is typically > 103 .m, it is not unusual for lower crust to be < 102 .m, and in places < 100 .m. That lower crust (below 10-15 km) can be as electrically conducting as seawater is remarkable, and indicates a substantial and highly-connected mineral, melt or aqueous phase. To date, temporal and spatial mechanisms to give rise to the low resistivity are speculative and poorly constrained by observation and laboratory measurement. We present new maps of the Australian crust resistivity inferred from the regional EM responses. The project addresses the question as to whether the low resistivity is primary in the formation of the crust, or overprint due to melt and fluid migration from a deeper thermal source. A secondary question is how regions of low resistivity from an interconnected phase can be preserved through time-scales of billions of years. Observations are drawn from: the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP); 2D MT transects; and legacy MT and geomagnetic depth sounding (GDS) data. Our research demonstrates a strong spatial correlation of crustal resistivity with tectonic domains in Australia. Lowest resistivities are often imaged just below the rheological boundary between upper and lower crust at ~10-15 km. Below, low resistivity appears as a broad zone, tens or hundreds of kilometres wide, and tens of kilometres thick; above the boundary, regions of low-resistivity appear as narrower pathways. Such maps are correlated with long-wavelength Bouguer gravity data, suggesting a common origin that changes both density and resistivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.