Abstract
As the design rule of the integrated circuits is decreasing to a 10 nm scale, the total electrical resistance of conventional Cu metallization increases rapidly. New conducting materials such as Co with shorter electron mean free paths, have gained significant attention and may replace Cu. Further, CoW alloys are being considered as alternatives to replace the TaN/Ta barrier layers. However, limited studies have been carried out to elucidate electrical resistivity changes in nanoscale Co and its alloys depending on the size and composition. In this study, we report the variations in electrical resistivity and the microstructural evolution of a series of single Co nanowires (NWs) prepared using template-assisted electrochemical deposition, with diameters ranging from 16 to 130 nm. Besides, we investigate CoW alloy NWs with W content ranging from 0 to 25.1 at.%. The Co NWs, in all diameter ranges, show substantially lower resistivity values compared to that in previous reports, where the value of an NW with a diameter of 16 nm is approximately 40 μΩ∙cm. The grain size also decreases as NW diameter decreases. Alloying W with Co NWs increases electrical resistivity. The 30 nm diameter CoW alloy NW with 25.1 at.% W shows the highest electrical resistivity value at 170 μΩ∙cm. This value decreases as post-deposition annealing temperature increases.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.