Abstract

We examine the range of rest-mass densities, temperatures and magnetic fields involved in simulations of binary neutron-star mergers and identify the conditions under which the ideal-magnetohydrodynamics approximation breaks down and hence the magnetic-field decay should be accounted for. We use recent calculations of the conductivities of warm correlated plasma in envelopes of compact stars and find that the magnetic-field decay timescales are much larger than the characteristic timescales of the merger process for lengthscales down to a meter. Because these are smaller than the currently available resolution in numerical simulations, the ideal-magnetohydrodynamics approximation is effectively valid for all realistic simulations. At the same time, we find that the Hall effect can be important at low densities and low temperatures, where it can induce a non-dissipative rearrangement of the magnetic field. Finally, we mark the region in temperature and density where the hydrodynamic description breaks down.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call