Abstract

To investigate the effect of magnetic field strength on the validity of two assumptions (namely, the "transceive phase assumption" and the "phase-only reconstruction") for electrical properties tomography (EPT) at 1.5, 3, and 7T. Electrical properties tomography is a method to map the conductivity and permittivity using MRI; the B1 (+) amplitude and phase is required as input. The B1 (+) phase, however, cannot be measured and is therefore deduced from the measurable transceive phase using the transceive phase assumption. Also, earlier studies showed that the B1 (+) amplitude is not always required for a reliable conductivity reconstruction; this is the so-called "phase-only conductivity reconstruction." Electromagnetic simulations and MRI measurements of phantoms and the human head. Reconstructed conductivity and permittivity maps based on B1 (+) distributions at 1.5, 3, and 7T were compared to the expected dielectric properties. The noise level of measurements was also determined. The transceive phase assumption is most accurate for low-field strengths and low permittivity and in symmetric objects. The phase-only conductivity reconstruction is only applicable at 1.5 and 3T for the investigated geometries. The measurement precision was found to benefit from a higher field strength, which is related to increased signal-to-noise ratio (SNR) and increased curvature of the B1 (+) field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.