Abstract
We have investigated the electrical resistance R(T) of ZnO nanowires of ≈ 400 nm diameter as a function of temperature, between 30 K and 300 K, and frequency in the range 40 Hz to 30 MHz. The measurements were done on the as-prepared and after low-energy proton implantation at room temperature. The temperature dependence of the resistance of the wire, before proton implantation, can be well described by two processes in parallel. One process is the fluctuation induced tunneling conductance (FITC) and the other the usual thermally activated process. The existence of a tunneling conductance was also observed in the current–voltage () results, and can be well described by the FITC model. Impedance spectroscopy measurements in the as-prepared state and at room temperature, indicate and support the idea of two contributions of these two transport processes in the nanowires. Electron backscatter diffraction confirms the existence of different crystalline regions. After the implantation of H+ a third thermally activated process is found that can be explained by taking into account the impurity band splitting due to proton implantation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.