7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1109/jeds.2021.3085981
Copy DOIPublication Date: Jan 1, 2021 | |
Citations: 8 | License type: CC BY 4.0 |
We have systematically examined electrical characteristics of ultra-thin body (UTB) (111) Ge-on-insulator (GOI) n-channel metal-oxide-semiconductor field-effect transistors (nMOSFETs) fabricated by the smart-cut process and have compared their electrical properties with those of (100) ones. The (111) GOI thickness was varied from 29.4 to 7.3 nm. The normal MOSFET operation of a 7.3 nm-thick (111)-oriented GOI nMOSFET has been demonstrated with a reasonable ON/OFF ratio of 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sup> . However, degradation in the effective electron mobility and subthreshold swing (SS) of the (111) GOI nMOSFETs with decreasing the GOI thickness ( T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">GOI</sub> ) was observed. Raman analyses and electrical characteristics of GOI nMOSFET under back-gate operation has suggested that a high interface state density at (111) GOI/buried oxide interfaces as well as low GOI film quality near the back interfaces can be an origin of this degradation of the electrical properties with thin body channels.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.