Abstract
Measurements of key properties of the two-dimensional transition metal trichalcogenide ZrSe3 are reported. The bulk material was created by chemical vapor deposition and subsequently exfoliated to obtain thin films of varying thicknesses. The samples were then characterized by atomic force microscopy measurements and Raman spectroscopy and contacted by e-beam lithography. Electrical measurements give values for the band gap energy of 0.6 eV increasing for thinner samples. Transistor measurements show ZrSe3 to be an n-type semiconductor. By looking at several samples with varying thicknesses, it was possible to determine a mean free path of 103 nm for the bulk material which opens the possibility for new electronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.