Abstract

The La2O3 and Al2O3/La2O3 layers were grown on 4H-SiC by atomic layer deposition (ALD) method. The electrical properties of La2O3 on 4H-SiC were examined using metal-insulator-semiconductor (MIS) structures of Pt/La2O3(18nm)/4H-SiC and Pt/Al2O3(10nm)/La2O3(5nm)/4H-SiC. For the Pt/La2O3(18nm)/4H-SiC structure, even though the leakage current density was slightly reduced after the rapid thermal annealing at 500 oC, accumulation capacitance was gradually increased with increasing bias voltage due to a high leakage current. On the other hand, since the leakage current in the accumulation regime was decreased for the Pt/Al2O3/La2O3/4H-SiC MIS structure owing to the capped Al2O3 layer, the capacitance was saturated. But the saturation capacitance was strongly dependent on frequency, indicating a leaky interfacial layer formed between the La2O3 and SiC during the fabrication process of Pt/Al2O3(10nm)/ La2O3(5nm)/ 4H-SiC structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.