Abstract

We report a theoretical study of the hole density and the low-field mobility in modulation p-doped rolled-up Si/SiGe heterostructures. Solving coupled Poisson and Schrödinger equations, we show that the total hole density is strongly affected by charged surface states and can reach value of 1011 cm−2 for available doping level at room and low temperature. The simulation of the hole transport along the structure axis based on a Monte Carlo method reveals that the interface roughness scattering is a main mechanism limiting the mobility magnitude, which reaches the value of 104 cm2/V s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.