Abstract

Growth of modulation-doped HgTe–CdTe superlattices (SLs) at very low temperatures (140 °C) by photoassisted molecular beam epitaxy is reported. SL layer thicknesses were intentionally chosen such that most of the SLs studied are inverted-band semimetals or inverted-band semiconductors. Both p- and n-type samples were successfully prepared and studied. The doped superlattices exhibit excellent electrical properties. Lack of carrier freeze-out at low temperatures provides convincing evidence that modulation-doping has been achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.