Abstract

We report a study on the electrical properties of 19-nm-thick yttrium iron garnet (YIG) films grown by liquid phase epitaxy on gadolinium gallium garnet single crystal. The electrical conductivity and Hall coefficient are measured in the high-temperature range [300,400] K using a Van der Pauw four-point probe technique. We find that the electrical resistivity decreases exponentially with increasing temperature following an activated behavior corresponding to a band gap of ${E}_{g}\ensuremath{\approx}2$ eV. It drops to values about $5\ifmmode\times\else\texttimes\fi{}{10}^{3}\phantom{\rule{4pt}{0ex}}\mathrm{\ensuremath{\Omega}}\phantom{\rule{0.16em}{0ex}}\text{cm}$ at $T=400$ K, thus indicating that epitaxial YIG ultrathin films behave as large gap semiconductors. We also infer the Hall mobility, which is found to be positive ($p$ type) at 5 ${\mathrm{cm}}^{2}\phantom{\rule{0.16em}{0ex}}{\mathrm{V}}^{\ensuremath{-}1}\phantom{\rule{0.16em}{0ex}}{\mathrm{sec}}^{\ensuremath{-}1}$ and almost independent of temperature. We discuss the consequence for nonlocal spin transport experiments performed on YIG at room temperature and demonstrate the existence of electrical offset voltages to be disentangled from pure spin effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.