Abstract

We report on the recrystallization of 200 nm thick as-grown Yttrium Iron Garnet ( Y3.4Fe4.6O12) films on the (111) face of gadolinium gallium garnet single crystals by post-deposition annealing. Epitaxial conversion of the as-grown microcrystalline yttrium iron garnet films was seen after annealing at 800 °C for more than 30 min both in ambient oxygen and in air. The as-grown oxygen annealed samples at 800 °C for 60 min crystallize epitaxially and show excellent figure-of-merit for saturation magnetization (MS = 3.3 μB/f.u., comparable to the bulk value) and coercivity (HC ∼ 1.1 Oe). The ambient air annealing at 800 °C with a very slow rate of cooling (2 °C/min) results in a double layer structure with a thicker unstrained epitaxial top layer having the MS and HC of 2.9 μB/f.u. and 0.12 Oe, respectively. The symmetric and asymmetric reciprocal space maps of both the samples reveal a locking of the in-plane lattice of the film to the in-plane lattice of the substrate, indicating a pseudomorphic growth. The residual stress calculated by the sin2ψ technique is compressive in nature. The lower layer in the air annealed sample is highly strained, whereas the top layer has negligible compressive stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.