Abstract
Discovery of new high-conductivity solid-state ionic conductors has been a long-lasting interest in the field of solid-state ionics for their important applications in solid-state electrochemical devices. Here, we report the mixed oxide-ion and Li-ion conductions, together with their conducting mechanisms in the Li2W2O7 material with triclinic symmetry. The process for the ionic identity is supported by several electrochemical measurements including electrochemical impedance spectroscopy, DC polarization, oxygen concentration cell, and theoretical analysis of neutron diffraction data and bond-valence-based energy landscape calculations. We show from electrochemical measurements strong evidences of the predominating oxide-ion conducting and minor Li-ion chemistry in Li2W2O7 at high temperatures, while the bond-valence-based energy landscape analysis reveals possible multidimensional ionic migration pathways for both oxide-ions and Li-ions. Thus, the presented results provide fundamental insights into new mixed ionic conduction mechanisms in low-symmetry materials and have implications for discoveries of new ionic conductors in years to come.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.